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Abstract

I develop a model of collaboration between tournament partici-

pants in which agents collaborate in pairs, and an endogenous struc-

ture of collaboration is represented by a weighted network. The

agents are forward-looking and capable of coordination; they value

collaboration with others and higher tournament rankings. I use

von Neumann-Morgenstern stable sets as a solution. I find stable

networks in which agents collaborate only within exclusive groups.

Both an absence of intergroup collaboration and excessive intra-

group collaboration lead to inefficiency. I provide a necessary and

sufficient condition for the stability of efficient outcomes in winner-

takes-all tournaments. I show that the use of transfers does not

repair efficiency.
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1 Introduction

We often observe collaboration between direct competitors. For in-

stance, firms that compete in the market for a final product frequently

collaborate at the R&D stage. Similarly, coworkers who compete for a pro-

motion collaborate with their rivals. Agents in these environments face a

dilemma: If they collaborate, they become stronger competitors, but they

also strengthen their rivals’ positions.

Under what conditions do competitors collaborate efficiently? And if

those conditions do not hold, what are stable patterns of collaboration?

Does competition suppress collaboration, and if it does, will agents use

transfers to exchange utility for collaboration and restore efficiency?

I address these questions with a model in which an endogenous structure

of collaboration is represented by a weighted network—i.e., I assume that a

quantum of collaboration is a bilateral interaction. I restrict my attention

to situations in which competition can be modeled as a tournament. In

a tournament, a higher level of collaboration, measured by the number of

collaborative partners and the intensity of the collaborative interaction,

results in better performance and, therefore, a higher tournament ranking.

In my model, a finite population of identical agents participates in a

tournament. Each agent may exert an effort to collaborate with any op-

ponents of his choice. The collaboration is nonexclusive, and if the agent

chooses a higher collaborative effort, his performance will improve only if

his collaborative partner reciprocates the effort. Once all of the collab-

oration has taken place, all agents are ranked according to their output,

which is increasing in their reciprocated collaborative efforts. Agents value

their output directly and indirectly through their preferences for higher

tournament ranks.

I focus on a protocol-free formation of a collaborative network. To

model this process, I take a cooperative route: I look at all possible sugges-

tions that agents can collectively make and test them against the possible

objections of other agents. This process results in stable sets of outcomes

(networks of collaboration) that are immune to objections. Requiring that

a stable outcome be immune to all objections is too strong, so I require

only that a stable outcome be immune to objections that lead to other
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stable outcomes. Formally, I study von Neumann-Morgenstern stable sets

of outcomes defined for a farsighted blocking relation.

My findings are threefold. First, I find stable networks of collaboration

that have a group structure. When tournament prizes are large enough,

agents are endogenously divided into several groups. Generally, agents col-

laborate at an excessively high level within each group, but collaboration

across groups is absent. Put differently, these groups form complete com-

ponents. Any complete component is strictly larger in size than a union of

all complete components that are smaller in size. In particular, the largest

complete component always contains a strict majority of all agents. The

number of groups, their size, and the intensity of the within-group collab-

oration are determined by the intensity of the competition. For instance,

when tournament prizes are small, the competition is mild, and the efficient

(complete) network of collaboration is stable.

The intuition behind this result builds on the observation that a large

enough group can guarantee top tournament rankings for its members, ir-

respective of what the rest of the agents do. To achieve that, the group

members must sacrifice collaboration with outsiders. Roughly speaking,

a large enough group has a collective maxmin strategy that yields a high

payoff for its members. Indeed, members of this group can refuse to col-

laborate with outsiders. If a group constitutes a majority, there are more

collaborative opportunities within the group than outside it; thus group

members have a competitive advantage in the tournament.

The size of each group is endogenous. It can be found by maximizing an

agent’s payoffs across complete components of various sizes (assuming that

the agent is part of these complete components). For example, the size of

the largest group maximizes a participant’s payoff across all possible groups

that can be formed by a strict majority. One interesting interpretation of

this criterion is the following: Imagine a by-invitation-only union in which

all participants collaborate with each other. Start with a union that is

formed by the smallest strict majority.1 In my model, such a union will

stop inviting new members as soon as it reaches the size of the largest

group.

My second finding is a necessary and sufficient condition for stability

1This is a necessary condition for union members to dominate the tournament.
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of efficient outcomes in winner-takes-all tournaments. I show that there

exists a stable set that contains an efficient outcome if and only if a payoff

of an agent in this outcome is weakly larger than a payoff of an agent in

any complete component that constitutes a strict majority and guarantees

its members top rankings in the tournament. Moreover, if such a stable set

exists, it is a singleton. For winner-takes-all tournaments, this condition is

equivalent to the prize in the tournament being sufficiently small. To the

best of my knowledge, this result does not appear in the literature (with

the notable exception of Dutta et al. (1998); however, a similar observation

in their paper is derived only for a three-agent example, and it does not

generalize).

The important driving force behind these two results is an externality

caused by tournament competition. Consider a complete network of collab-

oration in which all agents tie for all rankings in the tournament. Reducing

the intensity of a link between two agents moves both of them all the way

down to the bottom two positions of the ranking or, equivalently, moves

the rest of the agents away from the bottom two positions. In this case, the

two agents who reduce the intensity of the link bear the opportunity cost,

which equals the value of lost collaboration and the value of the top-ranking

positions. At the same time, these agents impose a positive externality on

the rest of the agents, since the rankings of the latter improve. Clearly,

agents cannot exploit this positive externality to their benefit unilaterally,

but collectively such an exploitation may be possible. For instance, con-

sider all agents who severe a link with agent i. These agents internalize the

effect of the positive externality they impose on each other.

I find that the requirement for the stability of efficient outcomes is very

demanding. A natural question, then, is whether one can allow agents

to buy missing collaboration from each other and restore efficiency. In

particular, there are large gains from such a trade in stable outcomes,

in which networks of collaboration feature group structure. In my most

general version of the model, I allow agents to use monetary transfers to pay

each other for collaboration. Transfers are modeled as voluntary bilateral

agreements, in which a pair of agents jointly decide on the amount of money

one agent will pay the other.

I show that transfers do not resolve the tension between stability and
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efficiency. In particular, the opportunity to transfer money voluntarily

does not affect the stability of outcomes in which agents in larger groups

refuse to collaborate with agents in smaller groups. The absence of links

between groups in these outcomes results in efficiency losses. I show that

even if we allow agents to split the gains of restored links endogenously

and without any restrictions, missing links are not restored. Intuitively,

agents are substitutes for each other. When negotiating the price of a

missing link, agents propose to implement new outcomes that generate

larger welfare compared to the starting point of negotiation. However,

these new outcomes are prone to collective deviations, and I show that the

set of collective deviations is so rich that the long-term gain of implementing

these outcomes is always zero. An important assumption in this part of the

model is that the transfers are part of self-enforcing bilateral agreements

and, therefore, are set in a decentralized manner.

These results are in line with the observation that the structure of col-

laboration between competitors is often asymmetric and inefficient. For

example, Bekkers et al. (2002) show that the network of cross-licensing

agreements between participants in the Global System for Mobile Commu-

nications (GSM) market had a tightly connected cluster of industry leaders.

Some firms were left out of these agreements, despite having large portfolios

of patents that were essential to GSM technology.

The rest of the paper is structured as follows. Related literature is

discussed in Section 2. Section 3 contains a simple three-agent example

that outlines the main findings of the paper. The setup of the general

model in Section 4 is followed by the results in Section 5. Applications of

the model are discussed in Section 6 and Section 7 concludes.

2 Related literature

This paper contributes to the literature on collaboration between rivals.

Related models are studied by Bloch (1995), Yi (1998, 1997), and Yi and

Shin (2000) in the context of coalition formation, and Joshi (2008), Goyal

and Joshi (2003), Goyal and Moraga-Gonzalez (2001), Marinucci and Ver-

gote (2011), Mauleon et al. (2014) and Grandjean and Vergote (2015) in the

context of network formation. These studies focus on R&D collaboration

among firms as the main application.
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Other applications that are relevant for this paper are sabotage in

tournaments and the interaction between discrimination and social sta-

tus. Lazear (1989), Chen (2003), and Konrad (2000) study various aspects

of sabotage in tournaments. McAdams (1995) studies racial discrimination

that is fueled by a desire to obtain higher social status.

A stability concept used in this paper, the farsighted stable set, is closely

related to various solutions used in the literature on coalition and network

formation with farsighted agents. Several papers in this literature follow

a cooperative approach and use farsighted stability concepts as solutions.

This strand of the literature includes Greenberg (1990), Chwe (1994), Ray

and Vohra (1997), Diamantoudi and Xue (2007), Herings et al. (2009), Page

et al. (2005), Grandjean et al. (2010), Grandjean et al. (2011) and Mauleon

et al. (2011). The version of the farsighted stable set used in this paper

differs from the versions defined in the above papers in a few aspects. First,

I allow for arbitrary acting coalitions (Herings et al. (2009) and Mauleon et

al. (2011) restrict the acting coalition to be a singleton or a pair). Second, I

allow agents to choose all of their actions (i.e., the intensity of collaboration

and the sizes of transfers) in a cooperative manner (Herings et al. (2009),

Page et al. (2005), Grandjean et al. (2010), Grandjean et al. (2011), and

Mauleon et al. (2011) focus on pure network formation).

Another strand of the literature uses dynamic noncooperative models

to describe the process of coalition or network formation. Among these are

Aumann and Myerson (1988), Bloch (1996), Konishi and Ray (2003), and

Dutta et al. (2005). Dynamic models can naturally accommodate the time

preferences of agents involved in the network-formation process. However,

this comes at the cost of less rich sets of coalitional deviations that agents

are allowed to undertake. In most of these models, exogenously chosen

proposers (or agenda setters) suggest the course of action.

3 Simple example

In this section, I present a simple three-agent example that illustrates

my main findings. Consider three engineers—Antony, Brutus, and Caesar—

who are participating in a winner-takes-all tournament. The objective of

the tournament is to select the best design for a phone. Each engineer is an

expert on a particular phone module: Antony’s specialty is touchscreens,
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Brutus’s is batteries, and Caesar’s is mobile processors and memory mod-

ules.

The engineers can ask each other to design high-quality proprietary

modules for their phones, or they can source low-quality generic modules

from the market. When two engineers—say, Antony and Brutus—agree

to collaborate, Antony can use a battery design developed by Brutus in

exchange for his own touchscreen design.2 In this case, their products will

have identical proprietary touchscreens and batteries. It is convenient to

represent a structure of bilateral collaboration by a network (see Figure 1)

in which nodes correspond to agents and links correspond to collaborations.

For simplicity, assume that the quality of a final product is strictly in-

creasing in the number of proprietary modules and does not depend on any

other characteristics. Therefore an engineer whose phone has the largest

number of proprietary modules wins the tournament. Also, assume that

even if an engineer does not win the tournament, he can use his prototype

in the future. The latter means that developing a high-quality prototype is

valuable: Let f(k) be the value of a prototype with k proprietary compo-

nents and R be a prize in the tournament. An engineer with a prototype

that has k proprietary components receives a payoff

f(k) + wR,

where w ∈ [0, 1] is the engineer’s chances of winning the tournament.

In this very stylized tournament, there is only one decision that each

engineer has to make: whom to collaborate with. Consider Antony and

Brutus. Collaboration between them does not change their relative po-

sitions in the tournament. Suppose that Antony has a better prototype

than Brutus. I assume that if they collaborate, Antony’s prototype will

still be better than Brutus’s. Moreover, collaboration contributes to the

value of both prototypes and makes them more competitive than Caesar’s

prototype.

If the competitors are myopic and can only make one link change at

a time, they will fully collaborate, and all three prototypes will be built

2Such a collaboration is essentially a cross-licensing agreement when engineers have
patent protection for their proprietary components.
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with proprietary components. More formally, the unique pairwise stable

network of collaboration is a complete one (see Figure 1a). This outcome is

also the unique efficient outcome, since the tournament is a constant-sum

game, and the value of prototypes is increasing with collaboration.

This paper focuses on a case in which agents are farsighted (i.e., they

care about their long-run payoffs) and able to coordinate with each other.

I show that the complete network of collaboration is no longer a plausible

prediction. For instance, suppose that R is large and all three engineers

are collaborating with each other. Any two engineers (e.g., Antony and

Brutus) have a jointly profitable deviation. If they simultaneously refuse

to share their modules with Caesar, the value of their prototypes drops

from f(2) to f(1), but their individual chance of winning the tournament

increases from 1/3 to 1/2, since Caesar’s prototype becomes strictly worse

than the other two prototypes (see Figure 1b). If R/6 > f(2)− f(1), such

a deviation is mutually beneficial for Antony and Brutus.

Antony

Brutus Caesar

(a) Complete network

Antony

Brutus Caesar

(b) Stable network

Antony

Brutus Caesar

(c) A deviation

Antony

Brutus Caesar

(d) Another stable net-
work

Figure 1: Various networks of collaboration

Naturally, one may cast doubt on the credibility of this deviation. For

instance, both Brutus and Caesar prefer to restore their missing link in

order to proceed from the outcome depicted in Figure 1b to the outcome

depicted in Figure 1c. Note that the credibility of the latter deviation

is also not obvious, as both Antony and Caesar would like to seize their
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collaboration with Brutus and restore their missing link in order to proceed

from the outcome depicted in Figure 1c to the one depicted in Figure 1d. It

is easy to see that there are no outcomes in this example that are immune

to all coalitional deviations.

To resolve this problem, I relax the stability requirement. Suppose

that stable outcomes are those that are immune only to credible coalitional

deviations (i.e., to deviations to other stable outcomes).3

If R/6 > f(2) − f(1), a set of all collaborative networks with exactly

one link is stable. To show this, consider the following two arguments.

First, there is no coalition of engineers who can and want to proceed from

the outcome depicted in Figure 1b to the one depicted in Figure 1d. In-

deed, the only engineer who wants to follow this path is Caesar, and he

cannot do anything to make this transition happen (he needs Antony’s

active participation, but Antony does not gain anything from this transi-

tion). Therefore, these three outcomes are immune to deviations to stable

outcomes. Second, for any outcome with zero, two or three links, there is

a coalition of two engineers who want to proceed to an outcome in which

they collaborate only with each other. Moreover, these two engineers can

always implement this transition without relying on the third. Therefore,

outcomes with zero, two, or three links are not immune to deviations to

stable outcomes.

To get a better intuition for the solution, consider two sets that are

not stable: a singleton that contains a complete network and the set that

contains two networks, as depicted in Figures 1c and 1d. The first set does

not satisfy the criteria for stability, because there are outcomes that are not

included in it and that are immune to deviations to the (allegedly) stable

outcomes. In particular, the networks in Figures 1b and 1d are immune

to deviations to the complete network. The property that the complete

network fails to satisfy is called external stability.

The second set, which consists of the two networks depicted in Fig-

ures 1c and 1d, does not satisfy the criteria for stability because the network

in Figure 1c is not immune to a deviation to the (allegedly) stable network

in Figure 1d. The property that this set fails to satisfy is called internal

stability. I discuss internal and external stability in detail in Section 4.

3This definition implies that a set of stable outcomes must be self-enforcing.
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When is the efficient level of collaboration stable in this example? All

three engineers share their design when competition is not too fierce, com-

pared to direct benefits from collaboration—i.e., when R ≤ 6(f(2)− f(1)).

This condition can be rewritten as

n ∈ arg max
k>n/2

{Vk},

where Vk = f(k) + R/k is the payoff of an agent participating in a large,

fully collaborating group of size k, and n is the total number of players

(n = 3 in this example). Intuitively, when a group is formed, its size is

determined by the utility of its representative member. New members are

added only if the current members benefit from the addition, and existing

members are excluded if the remaining ones benefit from the exclusion.

In the inefficient outcome in which, for instance, Antony and Brutus

collaborate with each other and Caesar is on his own, there are gains from

trade: Caesar could collaborate with the two other engineers and com-

pensate them for their loss in the tournament. Despite the presence of

gains from such a trade, voluntary transfers cannot destabilize the ineffi-

cient outcome mentioned above. The engineers are imperfect substitutes

for each other. Therefore, in the situation in which Caesar pays for his col-

laboration with competitors, he can propose a new arrangement in which

one of the competitors—e.g., Brutus—is dropped and the other, Antony,

is compensated with a small amount for following this proposal.

The findings presented in this section do not depend on the simplifying

assumptions about three-player winner-takes-all tournaments and the dis-

creet and costless nature of collaboration. In the next section, I present a

much richer model, followed by formal results that generalize the observa-

tions discussed here.

4 Model

Let N = {1, ..., n} be a set of identical agents competing in a tour-

nament. Tournament participants engage in bilateral collaborations with

each other. Agent i ∈ N chooses a vector of efforts xi = (Xi,j)j∈N ∈ Rn
+.

A component Xi,j of this vector is the amount of effort agent i contributes

to the collaboration with agent j. A matrix of efforts is defined as X =
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(x1,x2, ...,xn).

The structure of collaboration is described by a symmetric matrix G

that is defined as follows:

Gi,j = g(min{Xi,j, Xj,i}).

It is useful to visualize this matrix as a network in which links between the

agents represent bilateral collaboration. A link between agents i and j has

an intensity g(min{Xi,j, Xj,i}). I model the intensity as (a transformation

of) the smaller of the two efforts to capture the idea that collaboration

requires the consent and active participation of both collaborators.

The diagonal elements of matrix G play a special role in this model.

For an agent i, Gi,i = g(Xi,i) is (a transformation of) the effort the agent

spends working solo. Therefore, the diagonal elements of G capture the

activities that do not require collaborative partners, but are beneficial for

tournament participants. I assume no special order of choosing the two

types of efforts. This assumption allows me to capture the idea that agents

may respond to changes in their rivals’ collaborative levels by adjusting

their efforts toward working solo, and vice versa. The diagonal of G can

be used to compare the results of the main model to a scenario in which

collaboration is infeasible.4

I assume that function g : R+ → R+ is strictly increasing, concave,

and bounded from above by g = lim
z→∞

g(z). The monotonicity property is

self-explanatory. The concavity of g reflects the decreasing returns to the

collaborative effort. The assumption that g is bounded means that the

number of collaborative partners plays a crucial role in this model.5 I use

the following normalization: g(0) = 0.

The following notation will be useful: For M ⊂ N, I(M) ∈ {0, 1}N×N is

a matrix such that for all i : [I(M)]i,j = 1 if {i, j} ⊂M , and [I(M)]i,j = 0

otherwise. In particular, matrix I(∅) describes the empty network and I(N)

describes the complete network in which every link has a unit intensity. For

two matrices Y and Z, denote their Hadamard product by Y ◦ Z : ∀i, j :

4The returns to working solo are assumed to be equal to the returns to working with
a partner. This assumption does not play an important role in the analysis, and can be
easily removed at a cost of introducing additional notation.

5I discuss this assumption in detail in Section 5.
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[Y ◦ Z]i,j = Yi,jZi,j.

In the course of the tournament, agent i produces an output yi that is

determined by the total intensity of the agent’s collaboration:

yi(X) =
n∑
j=1

g(min{Xi,j, Xj,i}) =
n∑
j=1

Gi,j.

To model the process of forming collaborative relationships, I follow a

cooperative approach—i.e., I define a set of outcomes, agents’ preferences,

and a binary blocking relation on this set. Using these components, I study

stable outcomes in the sense of von Neumann and Morgenstern (see von

Neumann and Morgenstern (1944)).

An outcome in this model is a pair (X,T ) where X ∈ RN×N
+ is a matrix

of efforts that define a structure of collaboration, and T ∈ RN×N
+ is a matrix

that describes a system of transfers between agents. I assume that Ti,j ≥ 0

is the amount that agent i pays to agent j in the outcome (X,T ). By

(X, 0n,n), I denote an outcome with zero transfers. Finally, by U , I denote

a set of all feasible outcomes.

The result of the tournament depends on the vector of the agents’ out-

puts. In particular, given an outcome (X,T ), the agents are ranked accord-

ing to their outputs in descending order. Ties are resolved randomly using

the uniform distribution. Let R : N → R be a tournament prize schedule—

i.e., R(k) is the prize for an agent ranked k-th in the tournament. I assume

that R is decreasing and convex (the latter means that R(k)−R(k + 1) is

decreasing in k), and I normalize the prize for the agent with the lowest

ranking to be zero—i.e., R(n) = 0. For any i, j : 1 ≤ i ≤ j ≤ n, let

r(i, j) =
1

j − i+ 1

j∑
k=i

R(k)

be an expected prize for an agent who is randomly placed between rankings

i and j in the tournament (by construction, this agent ties with j− i other

agents).

The agent’s payoff is additive in his tournament prize, output, cost of
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effort, and transfers. The payoff of agent i in outcome (X,T ) is

Ui(X,T ) = r (pi(X), qi(X)) + f (yi(X)) +
n∑
j=1

(Tj,i − Ti,j − cXi,j) ,

where c > 0 is a constant marginal cost of effort, and pi and qi denote

the lower and the upper bounds on possible rankings for agent i in the

tournament. These bounds are defined as follows:

pi(X) = |{k ∈ N : yi(X) < yk(X)}|+ 1

and

qi(X) = n− |{k ∈ N : yi(X) > yk(X)}| .

I assume that function f : R+ → R+ is increasing.

By UM(X,T ), I denote a vector of utilities for the set of agents M in

outcome (X,T ). Also, for two vectors UM ,VM , I say that UM � VM if

∀i ∈M : Ui > Vi.

In this specification, the agents may derive a positive net value of col-

laboration without taking into consideration a tournament outcome. In

the vast majority of the literature (see Goyal and Joshi (2003), Goyal and

Moraga-Gonzalez (2001), Marinucci and Vergote (2011), and others), col-

laboration is assumed to be costly. I consider the possibility of both costly

and costless links6. The latter is interesting for two reasons: First, this

assumption relates better to some of the applications that I discuss in Sec-

tions 1 and 6; and second, it allows me to highlight a novel interaction

between collaboration and competition.

In the main specification of the model, I assume that the agents derive

a value only from their direct connections. One could get similar results if

indirect connections were assumed to be valuable for the agents. I consider

such an extension in Section 5.3.

Since agents’ utilities are linear in transfers, f is increasing, and g is

strictly increasing and concave, the set of efficient outcomes consists of

all outcomes in which all agents collaborate at the optimal level with all

6The case of costless links models a situation in which any two agents are always
better off collaborating with each other if the actions taken by all other agents remain
unchanged.
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available partners. In the efficient outcomes, networks of collaboration are

complete.

Remark 4.1. An outcome (X,T ) is efficient if and only if ∀i, j : Xi,j = x∗,

where

x∗ = arg max
x≥0
{f(ng(x))− cnx}.

A corresponding network of collaboration for an efficient outcome is always

complete.

Proof. Start with the observation that the Pareto frontier is a flat surface

with a slope of 45 degrees. Therefore, one can use a utilitarian welfare

criterion. Consider an outcome (X,T ). Observe that
n∑
i=1

n∑
j=1

Ti,j = 0. The

social welfare in this outcome is

W =
n∑
i=1

Ui(X,T ) =
n∑
i=1

(
f

(
n∑
j=1

Gi,j

)
− c

n∑
j=1

Xi,j

)
+

n∑
i=1

R(i).

This expression achieves the maximum if and only if X = x∗I(N).

The main result of this paper involves the stability of efficient outcomes

in this model. As shown in Remark 4.1, besides efficiency, these outcomes

have another potentially desirable property—completeness of the network

of collaboration.

4.1 Network formation and stability

When modeling the formation of collaborative relationships, I follow

the usual practice in cooperative games: I define a notion of stability using

a binary blocking relation on the set of feasible outcomes.

To understand the idea behind the blocking relation, consider a group

(or a coalition) of players carrying out a transition from one outcome to an-

other. Once the transition takes place, farsighted agents expect additional

transitions. Eventually, as the result of a sequence of such transitions, the

agents arrive at the “terminal” outcome from which no further transitions

are attempted. A necessary condition for rational agents to engage in such

a sequence of transitions is that ultimately, in the terminal outcome, they

are better off. I implicitly assume that the agents do not derive the utility

from transitory outcomes along a transition. More precisely, if there are
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two different transitions between outcomes (X,T ) and (X ′, T ′), agents do

not distinguish between these two transitions, because the final destina-

tion is the same. One way to justify this assumption is to interpret the

transitions as proposals and counterproposals (or objections) that agents

make to each other without engaging in the actual modification of physical

outcomes. These proposals are meant to convince everyone to proceed to

a stable outcome right away.

The following definition formalizes the idea of a feasible transition—i.e.,

what each coalition can do in terms of shaping outcomes. Note that the

feasibility of a transition does not depend on agents’ preferences.

Definition 4.2. A coalition M can enforce a transition from outcome

(X,T ) to outcome (X ′, T ′)—i.e., (X,T )
M→ (X ′, T ′) if for all i, j ∈ N :

(i) X ′i,j 6= Xi,j implies i ∈M ;

(ii) T ′i,j > Ti,j implies i, j ∈M ; and

(iii) T ′i,j < Ti,j implies i ∈M or j ∈M .

According to this definition, all agents who are active during a tran-

sition from one outcome to the other must be contained in the coalition

that enforces the transition. In this definition, it is postulated that play-

ers can unilaterally choose collaborative efforts. Recall, however, that an

increase in this effort does not necessarily translate into an increase in a

collaborative intensity, because Gi,j = g(min{Xi,j, Xj,i}). For example, if

Xi,j = Xj,i, both agent i and agent j must increase their efforts to increase

the intensity of their collaboration. Any agent can always unilaterally de-

crease the intensity of the collaboration with any of his partners. This

dichotomy reflects the fact that collaboration is achieved through a bi-

lateral agreement and is a standard assumption in the literature on the

formation of undirected networks.

A reduction in the amount of money transferred can be achieved uni-

laterally, either by refusing to pay (on the side of the sender) or refusing

to accept (on the side of the receiver).

The next definition introduces a blocking relation that formalizes, among

other things, the assumption that agents are rational and farsighted.
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Definition 4.3. An outcome (X,T ) ∈ U setwise farsightedly blocks (X ′, T ′) ∈
U or

(X,T ) B (X ′, T ′)

if there exists a finite sequence {(Sk, Xk, T k)}Kk=1, ∀k = 1, ..., K : Sk ⊂ N

and (Xk, T k) ∈ U such that

(i) (X ′, T ′) = (X1, T 1)
S1→ (X2, T 2)

S2→ . . .
SK→ (X,T ); and

(ii) USk(X,T )� USk(X
k, T k) for all k ≤ K.

To establish the intuition for this definition, assume that all agents

view outcome (X,T ) as stable (this assumption will be confirmed in the

definition of stable sets of outcomes: Definition 4.4). This outcome blocks

the other outcome (X ′, T ′) if the following conditions hold:

(i) There exists a sequence of transitions that starts at (X ′, T ′) and ar-

rives at (X,T ); every outcome of this sequence, except for (X,T ), is

assigned an active coalition that enforces a corresponding step in the

transition.

(ii) Every member of an active coalition strictly prefers the final desti-

nation of the transition (X,T ) to the outcome in which the coalition

becomes active. In other words, every agent who has to modify his

choice of efforts and transfers in order for the transition to proceed

benefits from the transition once it is complete. This condition mim-

ics the transition process in which coalition members are asked if they

wish to proceed with the transition or stay in the current outcome.

The blocking relation makes little sense on its own, and its adequacy

should not be judged in the absence of the stability concept. It is implic-

itly assumed that all agents who participate in a sequence of transitions

from (X ′, T ′) to (X,T ) believe that the latter outcome is final or, in other

words, stable. When this definition is used to check for stability, a blocking

outcome is always stable and a blocked one is arbitrary. A stability notion

that I use in conjunction with this blocking relation is the von Neumann-

Morgenstern stable set defined for an abstract problem (U ,B).7

7One can also define an abstract core for (U ,B). However, in my model, for the most
interesting values of parameters, this abstract core is empty.
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Definition 4.4. A set of outcomes R ⊂ U is farsighted stable8 if it satisfies

internal and external stability conditions:

(IS) for any (X,T ), (X ′, T ′) ∈ R : (X,T ) 7 (X ′, T ′); and

(ES) for any (X ′, T ′) 6∈ R there exist (X,T ) ∈ R : (X,T ) B (X ′, T ′).

Internal stability requires that stable outcomes do not block other stable

outcomes, while external stability requires that all outcomes that are not

part of a stable set are blocked by stable outcomes.

A stable set of outcomes is a collection of all outcomes that are un-

blocked by elements of this stable set. Let Y : 2U → 2U be a function

that, for a set of outcomes X , returns a set Y (X ) of all outcomes that

are unblocked by any outcome in X : Y (X ) = {(X,T ) ∈ U : (X ′, T ′) 7
(X,T ), ∀(X ′, T ′) ∈ X}. Then, R is farsighted stable if and only if

R = Y (R).

Farsighted stability is a set-valued solution. An element of a stable set

is not considered stable in isolation (unless the stable set is a singleton).

The stability of a single element hinges on the stability of all other elements

in the stable set. This means, for instance, that there can be more than

one stable set.

Note that in both the internal and external stability conditions, the

outcomes that are blocking or not blocking other outcomes come from the

conjectured stable set. Put differently, this definition ignores the instances

in which an unstable outcome blocks a stable outcome, because the transi-

tion that implements this blocking is not credible. Indeed, the agents who

participate in this transition should not be concerned about their well-being

in the unstable outcome. This connection between Definitions 4.3 and 4.4

is crucial for understanding the meaning of a farsighted blocking relation.

As Chwe (1994) shows, internal and external stability, together, imply

that stable sets possess a consistency property. Any collective short-run

profitable deviation to an unstable outcome is punished by a low long-run

8There is little agreement on naming various stability concepts in the recent literature
on cooperative games; this name is chosen following Ray and Vohra (2015).

17



payoff for at least one of the agents who participated in the deviation. I

discuss this property in detail in the online appendix.

Farsighted stability implicitly requires all agents to agree on the set

of outcomes that, once reached, are not followed by any deviations. It

also requires that all agents involved in a sequential deviation agree on the

exact path of this deviation. Put differently, I do not allow a situation in

which an agent initiates a certain transition that ends up different from his

original plan due to the actions of the other agents involved.

An alternative way to model agents’ beliefs is to define an expectation

function with a Markov property: a function that returns a stable outcome

for any given outcome if the latter is treated as an initial condition for the

transition process. This function is similar in spirit to an SPNE strategy

profile in a dynamic game. The expectation function was proposed by

Jordan (2006) and was later used by Acemoglu et al. (2012), Acemoglu

et al. (2015), Dutta and Vohra (2016), and others. The advantage of the

latter approach over sequential blocking is that the agent’s expectations

do not depend on whether the agent is currently involved in a transition

between outcomes. Also, the expectation function allows the acting agents

to maximize their preferences rather than just improve their well-being.

However, the drawback of this approach is that the expectation function

may not exist if the set of feasible transitions is large.

5 Stable sets

The main result of this paper is twofold. First, Theorem 5.3 shows

that there always exist stable sets in which each outcome has a group

structure. These stable sets exist both when transfers are allowed and

when they are not. When the group structure in these stable sets is non-

degenerate (i.e., there is more than one group), all of the outcomes in

these sets are inefficient. Second, I examine the hypothesis that there

exist other stable sets that contain efficient outcomes. For winner-takes-

all tournaments without transfers, Theorem 5.6 provides necessary and

sufficient conditions for efficient outcomes to be included in a stable set. If

these conditions are satisfied, the stable set is unique and does not contain

inefficient outcomes.
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5.1 Groups

In this section, I characterize a special class of stable sets that always

exist in this model. They have the following properties. First, agents are

partitioned into groups of a certain size. Each group must be larger than

the union of all of the smaller groups—i.e., the largest group must contain

a strict majority; the second largest group must contain a strict majority

once the largest group is removed; and so on.

Second, agents collaborate with all members of their own group and not

with anyone else. All agents within a group exert the same effort, but these

efforts may differ across groups. This property implies that all members of

a group will tie in the tournament.

Third, the effort exerted by an agent in a group k must be large enough

to guarantee that his output is weakly larger than the largest output that

agents in the smaller groups can produce. To calculate this bound on

effort, one should look at the counterfactual outcome in which all members

of all groups that are smaller than group k collaborate with each other at

the maximum (unachievable) level g. This condition ensures that agents’

tournament rankings are increasing in the size of their group and that

agents with low rankings cannot overthrow agents with high rankings.

Finally, the size of each group is chosen to maximize the payoff of its

representative member, taking the sizes of all larger groups as given.

To formalize this construction, consider a group of r agents collectively

trying to outperform other q < r agents who are collaborating with each

other at a very high (unfeasible) level of effort, but not collaborating with

the rest of the agents. The group is guaranteed to succeed in this task if

each member exerts an effort x toward every available partner, where x

satisfies rg(x) ≥ qg or

x ≥ g−1
(
qg

r

)
. (1)

If the members of the group want to maximize their output net of cost of

effort, under the requirement that they outperform other q < r agents for

all possible levels of collaboration between the latter, they must solve the
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following problem:

v(r, q) = max
x≥g−1( qgr )

{f(rg(x))− crx}. (2)

The effort level that solves this problem is an analog of a maxmin strategy.

The sizes of the groups can now be defined.

Definition 5.1. Consider a sequence {mk}Kk=1. Let M0 = 0, and for k ≥ 1,

let Mk =
k∑
i=1

mi. The sequence {mk}Kk=1 is group-optimal if MK = n and

for all k ≥ 1

mk ∈ arg max
n−Mk−1

2
<m≤n−Mk−1

{r(1 +Mk−1,m+Mk−1) + v(m,n−m−Mk−1)} .

For clarity of exposition, I assume that the group-optimal sequence

is unique. All of the results easily generalize to multiple group optimal

sequences by taking a union across these sequences. Given a group-optimal

sequence {mk}Kk=1, let

Vk = r (1 +Mk−1,Mk) + v (mk, n−Mk)

be a payoff of a representative member of group k and

xk = argmax
x≥g−1( qgr )

{f(mkg(x))− cmkx}

be an effort exerted by this member toward a collaboration with another

member of the same group.

The definition of m1 and V1 considers a set of all outcomes in which a

majority group of size m forms a complete component in which all members

of the group collaborate at the payoff-maximizing level, subject to the con-

straint that their effort must be sufficiently high to dominate all outsiders

in the tournament independent of the efforts of the outsiders. The size of

the majority group m1 is chosen to maximize the payoff of a single member.

The criterion for mk is identical to the criterion for m1, formulated with

respect to a “residual” problem in which the sizes and structure of all of

the larger groups are fixed.

20



Definition 5.2. An outcome (X,T ) has a group structure induced by a

sequence {mk}Kk=1 if there exists a partition N = {N1, ..., NK} of the set N

such that

(i) ∀k : |Nk| = mk; and

(ii) X =
K∑
k=1

xkI(Nk).

An example of an outcome that satisfies Definition 5.2 is given in Fig-

ure 2. This outcome is induced by a sequence {5, 3, 1} and effort levels

x1, x2 and x3. There are three complete components or groups of size 5,

3, and 1. A member of group k exerts efforts xk along every link that is

present in Figure 2.

x2

6

7

8

x1

1
2

3
4

5

x3
9

Figure 2: An outcome that has a group structure induced by a sequence
{5, 3, 1}.

Stable sets of outcomes always exist in this model, and at least one

consists of outcomes that have a group structure. In these outcomes, the

agents may use transfers within a group, but these transfers do not affect

the distribution of payoffs—i.e., for each agent, the sums of outgoing and

incoming transfers are equal.

Theorem 5.3. R is a stable set if every outcome (X,T ) ∈ R has a group

structure induced by a group optimal sequence and satisfies

(i) Xi,j = 0 implies Ti,j = 0; and

(ii) for any i ∈ N ,
∑
j∈N

Ti,j =
∑
j∈N

Tj,i.

Proof. Denote a set that satisfies the conditions of the theorem by R. One

has to show that set R is internally and externally stable.
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I start with internal stability. I show that for any (X ′, T ′), (X,T ) ∈ R,

(X,T ) 7 (X ′, T ′). Let H = {H1, ...} be a partition that induces (a network

of collaboration in) (X,T ) and F = {F1, ...} be a partition that induces

(X ′, T ′). Also, let B = {i ∈ N : Ui(X,T ) > Ui(X
′, T ′)}.

The following argument formalizes the idea that agents in set F1 will not

participate in the transition from (X ′, T ′) to (X,T ), because their utility

cannot be further increased. Agents from set F2 will not participate in this

transition, because in order for any of them to increase their utility, they

must get a spot in set H1. However, for that to happen, at least one agent

from F1 must participate in the transition. A similar argument applies to

sets F2, F3, etc.

Formally, denote an index of a largest set populated by agents from B in

(X,T ) by k—i.e., for all j < k : B∩Hj = ∅ andB∩Hk 6= ∅. LetM =
⋃
j≤k

Fj,

and note that |M | > N
2

. For any S ⊂ N\M and for any (X̂, T̂ ) : (X ′, T ′)
S→

(X̂, T̂ ), I have UM(X ′, T ′) = UM(X̂, T̂ ). Hence, if (X,T ) B (X ′, T ′), it

must be that UM(X ′, T ′) = UM(X,T ), which contradicts B ∩M 6= ∅ (by

construction of set B, if i ∈ B ∩ Hk, it must be the case that i ∈ Fj for

some j < k).

To show that R satisfies external stability, for any (X ′, T ′) 6∈ R, I

construct (X,T ) ∈ R : (X,T ) B (X ′, T ′). By the definition of set R, every

element of this set has a group structure. I will partition the transition

from (X ′, T ′) to (X,T ) into K stages in such a way that in the course of

stage k, only agents who form a group of size mk are active and, at the end

of the stage, this group is formed.

The following result is used to complete the proof.

Definition 5.4. An outcome γ = (X,T ) contains a top component if

∃M ⊂ N : |M | = m1, for all i ∈M : Xi,j = x1I{j ∈M},
∑
j∈M

Ti,j =
∑
j∈M

Tj,i

and
∑
j 6∈M

Ti,j = 0.

Lemma 5.5. Denote a set of agents whose payoff is below V1 by A(X,T ) =

{i : Ui(X,T ) < V1}. For any outcome (X,T ), either (X,T ) contains a top

component or one can always find (X ′, T ′) such that

(i) (X,T )
A(X,T )→ (X ′, T ′);
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(ii) A(X,T ) ( A(X ′, T ′); and

(iii) (X ′, T ′) does not contain a top component.

Proof. Suppose that (X,T ) does not contain a top component. Consider an

outcome (X̃, T̃ ) such that X̃i,j = Xi,jI{i, j 6∈ A(X,T )} and T̃i,j = Ti,jI{i 6∈
A(X,T )}. There are two cases to consider: Either (i) (X̃, T̃ ) contains a

top component or (ii) the opposite.

If it is case (ii), then ∃χ > 0 : For X̂i,j = Xi,jI{i, j 6∈ A(X,T )}+χI{i, j ∈
A(X,T )} and T̂i,j = Ti,jI{i 6∈ A(X,T )}, we have A(X,T ) ( A(X̂, T̂ ). Also,

(X̃, T̃ ) not containing a top component implies that (X̂, T̂ ) also does not

contain a top component. Therefore, (X̂, T̂ ) satisfies all three conditions

of the lemma.

Consider case (i), in which (X̃, T̃ ) contains a top component. Since

(X,T ) does not contain a top component and (X̃, T̃ ) does, there exists

a player k 6∈ A(X,T ) such that
∑

i∈A(X,T )
Gi,k > 0. Consider an outcome

(X ′, T̂ ), such thatX ′i,j = Xi,j(I{i, j 6∈ A(X,T )}+I{i = k and j ∈ A(X,T )}+
I{j = k and i ∈ A(X,T )}). The outcome (X ′, T̂ ) does not contain a top

component. Moreover, by convexity of R, A(F ′, T̂ ) = N \ {k} ⊃ A(F, T );

hence, (F ′, T̂ ) satisfies the conditions of the lemma.

Consider an outcome (X̂, T̂ ) that emerges at the end of stage k − 1.

There is either a set of agents Nk such that ∀i ∈ Nk : Xi,j = Xj,i = xkI{j ∈
Nk} or the opposite. In the former case, stage k is degenerate. In the latter

case, let A(X̂, T̂ ) = {i : Ui(X̂, T̂ ) < Vk}. If |A(X̂, T̂ )| < (n −Mk−1)/2,

applying Lemma 5.5 repeatedly will obtain a sequence of outcomes such

that the last element of the sequence, (X̃, T̃ ), satisfies |A(X̃, T̃ )| ≥ mk.

Moreover, the transition between the elements of the sequence can be en-

forced by agents in corresponding sets A(·, ·), and these sets are nested. In

the final step of the transition, select mk agents from A(X̃, T̃ ) (including

all agents who were active in all of the previous steps), and call this set Nk.

An outcome (X∗, T ∗), such that X∗ij = xkI{i, j ∈ Nk} + X̃ijI{i, j 6∈ Nk}
and T ∗ij = T̃ijI{i, j 6∈ Nk}, finalizes stage k.

The same result holds if transfers are not allowed—i.e., if the set of
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feasible outcomes is

U0 =
{

(X,T ) ∈ RN×N
+ × 0n,n

}
.

Indeed, the transitions are constructed in such a way that transfers are

reduced in the course of a transition. If, in the origin of a transition, all

transfers are equal to zero, the whole transition sequence is contained in

U0.

From an efficiency perspective, the outcomes presented in Theorem 5.3

have too much intragroup collaboration and too little intergroup collabo-

ration.

These outcomes have many missing links in networks of collaboration.

A large group of agents isolates itself from others to ensure top tournament

ranking for its members. An absence of collaboration between groups is an

extreme measure. Indeed, there are other outcomes that induce the same

distribution of tournament ranks and feature strictly more direct net ben-

efits from collaboration. In other words, there are outcomes that Pareto-

dominate the stable outcomes found in Theorem 5.3. However, deviations

to Pareto-improving outcomes are not credible, because collaboration be-

tween agents who are ranked differently in the tournament opens a door

for further modification of a collaborative network. In particular, agents

who are ranked low may threaten others with dropping the existing links.

This may lead to losses for agents who are ranked high in the tournaments

because they may lose both the value of deleted links and their high rank-

ing. To neutralize threats of this kind, the dominant majority severs all

links to all other agents in the stable outcomes found in Theorem 5.3.

Also, for some parameters of the model, there is excessive within-group

collaboration. Collaboration within large groups may have an inefficiently

high intensity because the members of these groups are threatened by com-

petition from lower-ranked agents. This concern is formalized in inequality

(1) when the group optimal sequence is defined. This competition may

not materialize in stable outcomes, but the agents must still take it into

account because it can be part of a credible blocking transition.

When the size of group k is chosen, group members face the following

trade-off: Making the group smaller leads to a higher expected prize in
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the tournament, but expanding the group results in more opportunities for

collaboration and makes it less costly to compete with the remaining agents.

Formally, r(1+Mk−1,m+Mk−1) is decreasing in m, and v(m,n−m−Mk−1)

is increasing in m (because f(m(g(x))) is increasing in m and the set of

the permissible effort levels expands with m).

The equation for m1 is related to union mentality; to see this, consider a

problem of a homogeneous union inviting new members. The optimal size

of the union, from the point of view of its existing members, is m1. Each

member of such a union evaluates new members based on their potential

contribution to existing members’ well-being. This decision rule leads to

inefficient allocation of membership, because the well-being of outsiders

(i.e., potential members) is ignored.

It is well known that in group-formation (or coalition-formation) mod-

els, a union mentality results in inefficient outcomes (for a summary of these

results, see Ray (2007)). Note, however, that in those models, each member

of a group has veto power over the inclusion of new members. This veto

power reflects the assumption that group membership is exclusive. This

is not the case in my model, in which it is feasible for any member of a

group to collaborate with outsiders. Nevertheless, there is a stable set of

outcomes with a full separation of groups. This means that the notion of

a group arises endogenously.

Theorem 5.3 makes the connection between the results obtained in the

literature on coalition-formation and network-formation models.9 Theo-

rem 5.3 justifies the notion of a coalition—or simply a group of agents—

that is characterized by exclusive membership and a lack of connections

with outsiders. The vast majority of the literature assumes that a coali-

tional structure is a partition of the set of agents: An agent cannot be a

member of more than one coalition at any given moment in time (see Ray

(2007), Section 14.4). In my model, this property is endogenous and can

be derived from stability conditions. Moreover, the stable set of coalitions

in a coalition-formation model (either a canonical cooperative model or a

model with sequential proposals, as in Bloch (1995, 1996)), in which agents

are endowed with the same preferences as in the current model, is the same

as the set of groups (network components) in Theorem 5.3. Of course, this

9A similar result in a different setting appears in Erol and Vohra (2014).
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result must be taken with a grain of salt, because there may exist other sta-

ble sets of networks in which the structure of connections between agents

cannot be reduced to groups.

The rules of the tournament—or, more precisely, the feature by which

tournament participants are awarded prizes based on a ranking of their

outputs—allow me to construct outcomes in which smaller groups of agents

cannot change the payoffs of members of larger groups without their con-

sent. This feature underlies the internal stability of the stable sets charac-

terized in Theorem 5.3. That is why the largest group should constitute

a strict majority; otherwise, the remaining agents may overrule the out-

come. This feature is also important for the existence of stable sets: It

limits the externalities sufficiently for a stable set to exist for any vector of

parameters.

Definition 5.1 pins down the size of each group in the stable networks

characterized in Theorem 5.3 uniquely (up to indifference). The literature

on pairwise stable networks of collaboration, such as Goyal and Joshi (2003,

Proposition 3.5) and Marinucci and Vergote (2011, Propositions 1 and 2),

puts bounds on sizes of interconnected groups. The multiplicity of pairwise

stable networks in those models follows from the inability to rule out failures

of coordination. In my model, group members collectively decide on the

group’s composition by maximizing participants’ payoffs; hence, there is no

scope for miscoordination.

Apart from constructing interesting stable outcomes, Theorem 5.3 also

solves an important technical problem: It establishes the existence of far-

sighted stable sets in the model. Indeed, the set of outcomes found in

Theorem 5.3 is well defined for any vector of the parameter values. There

is no general existence theorem for farsighted stable sets in hedonic games10.

By proving that any element in the core is a singleton stable set, Mauleon

et al. (2011) show that farsighted stable sets always exist in a one-to-one

two-sided matching framework. Several papers (see Ray and Vohra (1997),

Levy (2004), and Acemoglu et al. (2012)) use acyclicity conditions imposed

on the superposition of feasible transitions and individual preferences over

outcomes to enable the use of backward induction in constructing farsighted

stable sets. I show the existence of farsighted stable sets in my model with-

10See the discussion of known existence results in Ray and Vohra (2015).
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out relying on these commonly used assumptions.

The previous result suggests that competitive forces may lead to ineffi-

cient outcomes. In the case of winner-takes-all tournaments, this observa-

tion generalizes to any farsighted stable set. The efficient outcome is stable:

It belongs to some stable set if and only if the stakes in the competition

are low. This is the second main result of this paper.

Theorem 5.6. Suppose that

(i) transfers are not allowed—i.e., the set of feasible outcomes is

U0 =
{

(X,T ) ∈ RN×N
+ × 0n,n

}
;

(ii) the tournament is winner-takes-all—i.e., R(k) = R(n) for all k > 1.11

Then, there exists a stable set R that contains an efficient outcome if and

only if a group optimal sequence is {n} or, equivalently,

n = argmax
n
2
<m≤n

{r(1,m) + v(m,n−m)} . (3)

Proof. If (3) holds, Theorem 5.3 implies that there exists a singleton sta-

ble set that contains the efficient outcome with the complete network of

collaboration.

Suppose that (3) does not hold, and let (X, 0n,n) be an outcome in

which X has a group structure induced by some group-optimal sequence

{mk}Kk=1. Note that m1 6= n. Let (X∗, 0n,n) be the efficient outcome—i.e.,

∀i, j : X∗i,j = x∗ where

x∗ = argmax{f(ng(x))− cnx},

and let R be a farsighted stable set.

Assume by contradiction that (X∗, 0n,n) ∈ R. Since (X∗, 0n,n) 7
(X, 0n,n) and (X, 0n,n) B (X∗, 0n,n), it must be that (X, 0n,n) 6∈ R, and

there must exist (X ′, 0n,n) ∈ R such that (X ′, 0n,n) B (X, 0n,n). Then,

(X∗, 0n,n) B (X ′, 0n,n), which is a contradiction.

11This condition can be relaxed to R(2) < r(1, n).
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To show this, define a set of winners in the tournament

H(Z) =

{
i ∈ N

∣∣∣∀k ∈ N :
∑
j∈N

g (min{Zi,j, Zj,i}) ≥
∑
j∈N

g (min{Zk,j, Zj,k})

}

and a set of agents who are immediately willing to make a transition into

(X∗, 0n,n)

B(Z) =
{
i ∈ N

∣∣∣Ui(Z, 0n,n) < f(ng(x∗))− cnx∗ + r(1, n)
}
.

Since r(1, n) > R(2) = 0, for all i 6∈ H(Z),

f

(
n∑
j=1

g(min{Zi,j, Zj,i})

)
−

n∑
j=1

cXi,j < f(ng(x∗))− cnx∗ + r(1, n)

or

Ui(Z
′, 0n,n) < Ui(X

∗, 0n,n). (4)

Therefore, ∀Z : N \H(Z) ⊂ B(Z).

There are two cases to consider: Either (i) |B(X ′)| < n/2; or (ii)

|B(X ′)| ≥ n/2 (if n = |H(X ′)|, it is impossible that (X ′, 0n,n) B (X, 0n,n)).

In case (i), since (X ′, 0n,n)B (X, 0n,n) for any i ∈ H(X ′), Ui(X
′, 0n,n) >

V1. Therefore, either ∀i ∈ H(X ′), j 6∈ H(X ′) : min{X ′i,j, X ′j,i} = 0 or

the opposite. In the latter case, select a pair a ∈ H(X ′), b 6∈ H(X ′) :

min{X ′a,b, X ′a,b} > 0 and consider an outcome X1 :

X1
i,j = X ′i,jI{i or j 6∈ B(X ′)} −X ′b,aI{i = b and j = a}.

Clearly, H(X1) ( H(X ′). Repeat this procedure iteratively until either

|B(Xk)| ≥ n/2 or ∀i ∈ H(Xk), j 6∈ H(Xk) : min{Xk
i,j, X

k
j,i} = 0

If ∀i ∈ H(Xk), j 6∈ H(Xk) : min{Xk
i,j, X

k
j,i} = 0 or |B(Xk)| ≥ n/2,

there exists χ such that an outcome X ′′ satisfying

∀i, j ∈ N : X ′′i,j = Xk
i,jI{i, j 6∈ B(Xk)}+ χI{i, j ∈ B(Xk)}

results in a low payoff for all agents:

∀i ∈ N : Ui(X
′′, 0n,n) < f(ng(x∗))− cnx∗ + r(1, n).
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The sequence of outcomes that results from this construction enforces

(X∗, 0n,n) B (X ′, 0n,n).

Theorem 5.6 is qualitatively different from the results obtained in the

literature. The model in which collaboration is costless (recall that, in this

model, the moderate amount of collaboration is beneficial for its partici-

pants even if they are ranked very low in the tournament) is considered

a simple case in the literature: Either the efficient outcome is guaranteed

to be pairwise stable, or all agents exert an inefficiently large collaborative

effort. In both cases, the pairwise stable outcomes are symmetric. If links

are moderately costly, the efficient outcome is stable, but there may be

inefficient outcomes that are also stable. Theorem 5.6 says that even in

a simple case with costless links, efficiency is incompatible with stability

if potential gains from competition are high. More precisely, the efficient

outcome can neither be singleton stable nor can it coexist with any other

outcomes in any stable set.

The condition (3) is equivalent to R(1) ≤ R∗, where

R∗ = min
n
2
<m<n

{
mn

n−m
(v(n, 0)− v(m,n−m))

}
≥ 0,

for winner-takes-all tournaments. It requires that the tournament prize is

low compared to the direct value of collaboration. Theorem 5.6 suggests

that if this condition is not satisfied, a strict subset of agents would be

willing to sacrifice some collaboration in exchange for the top tournament

ranking. A collective tactic that achieves top tournament rankings for a

large group of agents has a maxmin property. By following this tactic, the

agents obtain top rankings no matter what outsiders do.

The set of outcomes described in Theorem 5.3 plays an important role

in Theorem 5.6, as suggested by condition (3). Suppose that equation (3)

does not hold. If agents are in a stable set P , either P = R (and an efficient

outcome is not inside the set) or the outcomes in P block the outcomes

in R. In the latter case, these outcomes either block or are blocked by an

efficient outcome.

In mainstream models of tournaments with costly effort and no possibil-
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ity of collaboration, equilibrium outcomes are usually inefficient. In those

models, every agent in the efficient outcome has an individual incentive to

raise his effort and collect a higher tournament prize. My model rules out

this source of inefficiency: Agents are capable of coordination, and indi-

vidual incentives yield to collective interests. Indeed, if one removes the

possibility of collaboration from the current model, the outcome in which

every agent exerts an effort

xa = arg max
x≥0
{f(g(x))− cx}

is a singleton stable set. Therefore, the inefficiency highlighted in Theo-

rems 5.3 and 5.6 is caused by agents’ cooperative behavior in the presence

of competition.

5.2 The role of transfers

A common intuition suggests that the ability to use transfers should

allow agents to reach an efficient outcome and stay in it. As shown in

Theorem 5.3, when tournament prizes are large, agents create gaps in stable

collaborative networks to sustain the difference in rankings between the

fully connected majority and the rest of the population. This difference in

ranking results in an extra payoff. One may argue that the minority can

offer transfers to the majority in exchange for missing links; it is possible

for agents to emulate an unequal division of tournament prizes through a

system of transfers, while enjoying the maximum value of collaboration.

However, this does not always happen in stable outcomes. More precisely,

the outcomes that I find in Theorem 5.3 are stable independent of whether

agents can use voluntary bilateral transfers.

Remark 5.7. Suppose that the set of feasible outcomes is

U0 =
{

(X,T ) ∈ RN×N
+ × 0n,n

}
.

R is a stable set if every outcome (X,T ) ∈ R has a group structure induced

by a group optimal sequence.

Proof. This remark follows directly from the proof of Theorem 5.3.
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Note that a central planner can easily implement an efficient outcome

by collecting the total surplus in every outcome and redistributing it uni-

formly across agents. However, if the process of setting up transfers is

decentralized, the efficiency of a stable outcome is guaranteed only when

the prizes in the tournament are small. In that case, transfers play no role,

as stated in Remark 5.7.

Transfers do not necessarily help with efficiency and do not realize po-

tential gains from trade, because they lack endogenous credibility. A mi-

nority may pay a majority to restore missing links, but there exists a similar

outcome in which members of the minority swap roles with some members

of the majority: The latter should pay the former. Note that this argument

does not rely on symmetry; even in a model with moderate heterogeneity,

agents are imperfect substitutes for each other and the same argument ap-

plies. Alternatively, one may think of this situation as a competition a là

Bertrand, in which every agent is both a buyer and a seller of missing links.

The lack of credibility is neither a general property of transfers nor an

artifact of the solution concept. It is tournament-induced externalities that

make transfers endogenously noncredible. To see that transfers may be en-

dogenously credible in similar environments without externalities, consider

the following modification of the model. For simplicity, suppose that there

are n = 2 agents who have an opportunity to collaborate with each other.

Let the prize in the tournament be zero. Also, suppose that the agents dif-

fer in terms of their cost of effort. In particular, suppose that c1 > c2 > 0.

For simplicity, assume that ∀x : f(x) = x. If transfers are allowed, an

efficient outcome (X∗, T ) must satisfy X∗1,2 = X∗2,1 and

X∗1,2 = arg max
x≥0

{
g(x)− c1 + c2

2
x

}
.

It is very costly for agent 1 to collaborate at this level. For agent 1, the

optimal choice of X1,2 is

X1
1,2 = arg max

x≥0
{g(x)− c1x} < X∗1,2.

Similarly, for agent 2, the optimal choice of X2,1 (conditional on agent 1
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fully reciprocating) is

X2
2,1 = arg max

x≥0
{g(x)− c2x} > X∗1,2.

If transfers are not allowed, for any x ∈ [X1
1,2, X

2
2,1] that is individually

rational for agent 1—i.e., that satisfies g(x)−c1x ≥ 0—an outcome (X, 02,2)

such that

X =

(
X∗1,1 x

x X∗2,2

)
.

is a singleton stable set. All of these outcomes, except for at most one,

are inefficient. However, if transfers are allowed, none of these networks of

collaboration remains stable except for the efficient ones (X∗, T ). In this

case, agents use transfers to exploit gains from trade (i.e., to compensate

agent 1 for the extra effort he is exerting in the efficient outcome) and

to depart from inefficient outcomes. Transfers do restore efficiency in this

simple example12 but do not necessarily do it in the main model, because

a tournament introduces an externality that large groups of agents may

exploit to divert surplus from the remaining agents.

It is useful to look at the main model from a coalition-formation per-

spective. The conditions for a nontrivial group optimal sequence in The-

orem 5.3 have the same flavor as the condition of unbalancedness in the

Bondareva-Shapley theorem for TU games (with the difference that once

the group is formed in my model, group members choose their collaborative

effort levels). Indeed, define a coalition as a set of all agents who belong

to the same component and the value of that coalition as a maximum sum

of agents’ utilities. In this case, for a coalition S of size m > n/2, the

value is V (S) = m[r(1,m) + v(m,n−m)]. The condition for the nontriv-

ial group-optimal sequence {mk}Kk=1 boils down to the absence of balance:

V (S)/|S| > V (N)/n. When considering small coalitions, one must recall

that the value of a coalition depends, in general, on the whole coalition

structure; therefore, when computing the value, one must assume that

other coalitions are structurally sound—i.e., they do not want to merge or

split.

12This result holds for an arbitrary number of agents and an arbitrary increasing
function f .
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The model is not neutral to the introduction of transfers. Transfers may

allow agents to exploit some gains from trade if these gains are not associ-

ated with externalities. Also, the presence of transfers imposes a restriction

on the payoffs in various outcomes inside a stable set. In particular, in the

presence of transfers, outcomes in any stable set must induce at least two

distinct vectors of payoffs.

Theorem 5.8. If the group optimal sequence is such that m1 < n, there

exists no stable set R such that for any (X,T ), (X ′, T ′) ∈ R and for all

i ∈ N : Ui(X,T ) = Ui(X
′, T ′).

Proof. I show that any set of outcomes characterized by a single payoff

vector necessarily violates external stability.

Take a set R such that for any (X,T ), (X ′, T ′) ∈ R and for all i ∈ N :

Ui(X,T ) = Ui(X
′, T ′). Without loss of generality, assume that agents are

enumerated in such a way that i > j implies that Ui(X,T ) ≥ Uj(X,T ).

Note, that nV1 >
∑
i∈N

Ui(X,T ).

I construct an outcome (X̂, T̂ ) such that it is not blocked by any out-

come in R. Partition a set {1, ..., n} into two sets, N1 = {1, ...,m1} and

N2 = {m1 + 1, ..., N}, and consider an outcome (F̂ , T̂ ) such that

(i) X̂i,j = x1I{{i, j} ⊂ N1};

(ii) X̂i,j = 0 implies Ti,j = 0; and

(iii) ∀i ∈ N1 : Ui(X̂, T̂ ) > Ui(F, T ).

There always exists a system of transfers that satisfies condition (iii), be-

cause

1

m1

m1∑
i=1

Ui(X,T ) ≤ 1

n

n∑
i=1

Ui(X,T ) < V1 =
1

m1

m1∑
i=1

Ui(X̂, T̂ ).

By construction, for any S ⊂ N2 and for all (X ′, T ′) : (X̂, T̂ )
S→ (X ′, T ′):

UN1(X
′, T ′) = UN1(X̂, T̂ ) > UN1(X,T ). Therefore, (X̂, T̂ ) is not blocked

by any outcome that induces the payoff vector U(X,T ).

This theorem, when applied to efficient outcomes, dictates that when

the optimal group sequence is nontrivial, an efficient outcome cannot con-

stitute a singleton stable set.
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5.3 Extensions and special cases of the model

One important feature of the current model is that the existence of

stable outcomes with group structure does not rely on the assumption of

costly collaboration. Formally, the current model does not cover the case

in which c = 0, because agent’s maximization problem (2) does not have

a solution. However, one can extend the model to accommodate this case.

This extension of the model generalizes the example presented in Section 3.

Suppose that c = 0. Allow the agents to choose the infinite effort, set

g(∞) = g and normalize g to be 1. For simplicity, assume that agents

cannot exert any intermediate effort level—i.e., ∀i, j : Xi,j ∈ {0,∞}. In

this case, a collaboration can be fully described by an undirected graph

G ∈ {0, 1}n×n.

The payoff of agent i in outcome (G, T ) is

Ui(G, T ) = r(pi(G), qi(G)) + f (y(G, i)) +
∑
j∈N

(Tj,i − Ti,j),

where y(G, i) =
∑
j∈N

Gi,j is the output of agent i in outcome (G, T ). All of

the other definitions carry over to this extension without modification.

A group optimal sequence {mk}Kk=1 solves

mk ∈ arg max
n−Mk−1

2
<m≤n−Mk−1

{r(1 +Mk−1,m+Mk−1) + f(m)} .

In this extension, the choice of collaborative intensity is limited; therefore,

when defining the group optimal sequence, I can omit the first maximization

problem that defines function v. Similar to the main model, the set of all

networks that have a group structure induced by a group optimal sequence

is a stable set, independent of whether transfers are allowed. Also, in the

winner-takes-all tournaments, the efficient outcome—which is a complete

network of collaboration—belongs to a stable set if and only if the group

optimal sequence is {n}:

n ∈ arg max
n
2
<m≤n

{r(1,m) + f(m)}
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or, equivalently,

R(1) ≤ min
m>n

2

{
mn

n−m
(f(n)− f(m))

}
.

These results extend Theorems 5.3 and 5.6 and Remark 5.7 to the case of

costless collaboration.

This version of the model can also be extended to allow for the agent’s

output to depend on his indirect connections. Given a network of collab-

oration G, let each agent i produce output y(G, i), which depends on the

amount of indirect collaboration in which the agent is involved:

y(G, i) =
∞∑
k=0

n∑
j=1

αk(G
k)ji,

where αk represents the weight that is assigned to an indirect collaboration

with agents who are k connections away from agent i. I normalize α0 =

α1 = 1, and I assume that αk is decreasing in k. There are two special

commonly used cases for this formulation: (i) when αk = 0 for all k > 1,

the output is equal to the degree of the agent in G; and (ii) when αk = αk,

the output is equal to the Katz centrality measure of node i in network G.

As shown in the online appendix, the results remain qualitatively the

same compared to the case in which only direct connections contribute to

the agents’ output. This happens for two reasons. First, indirect con-

nections are assumed to contribute less than direct ones (αk is decreasing

in k). Second, an agent’s output does not depend on the connections of

agents who do not belong to the same component ((Gk)ji = 0 for all k if

agents i and j belong to different components of network G). Intuitively,

Theorem 5.3 characterizes the stable set of outcomes in which agents are

connected if and only if they have the same payoff and ranking. From this

perspective, indirect connections are not different from direct ones: If there

are two indirectly connected agents who have different payoffs, there must

exist two directly connected agents who have different payoffs. The formal

statements and proofs of these results are relegated to the online appendix.

Another interesting special case of the model is when f(z) = 0 for all z.

This is the opposite of the case with costless links, and it corresponds to
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the situation in which collaboration is costly and has no direct benefits to

the participants. Therefore, the only reason that agents would want to col-

laborate is to gain an advantage over their competitors in the tournament.

When collaboration provides no direct benefit to the participants, there is

no welfare loss from the fact that agents are not collaborating between the

groups in the stable set characterized in Theorem 5.3. However, there are

welfare losses from the excessively intensive collaboration within the larger

groups. In this case, the role of inequality (1) is particularly stark: It puts a

lower bound on the amount of inefficiency in this stable set. The trade-off

between making a dominant group smaller or larger becomes a trade-off

between a higher expected ranking and a smaller cost of dominating the

remaining agents in the tournament. This case is extensively studied in the

literature on R&D collaboration. As in this literature, the smallest group

of agents in this stable set does not collaborate at all (xK = 0).

5.4 Other forms of competition

Unfortunately, studying a model that nests several forms of competition

is quite difficult, for both theoretical and expositional reasons. Here I

present a very simple example that points in the direction of a condition

on payoffs that one can use to extend the results of this paper to other

forms of competition, such as Tullock contests or monopolistic, Cournot,

or Bertrand competition. Using the same example, I argue that stable sets

may not exist if this condition is not satisfied.

Consider three agents who are competing with each other in a Tullock

contest for a prize R. Each agent chooses a vector of collaborative efforts.

For simplicity, I assume that any effort level is restricted to either 0 or 1,

and therefore collaboration between the agents can be fully described by a

graph G ∈ {0, 1}3×3. As in the main model, Gi,i represents agent i’s effort

toward working solo. Per-unit cost of effort is c, and agent i’s output is

yi(G) =

(∑
j

Gi,j

)α

,

where α > 0, and the direct value of agent’s output is zero. To further

simplify this example, I assume that the agents cannot use transfers.
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The probability of agent i winning the contest (and getting the prize

R) is proportional to his output; therefore, the payoff of agent i is

Ui(G) =



(∑
j
Gi,j

)α
∑
k

(∑
j
Gk,j

)αR− c∑
j

Gi,j, if
∑
k,j

Gk,j > 0;

1
3
R otherwise.

Agent i’s expected share of the prize increases in his own degree and de-

creases in the average degree of all agents. In contrast to the main model,

agent’s payoff is sensitive to the efforts of all other agents in any outcome.

For the purpose of this example, I consider two cases: A set of outcomes,

each of which features a group structure (similar to the one in Theorem 5.3),

is stable if α = 1; the same set is not stable if α = 3. The difference between

the two cases is due to a condition that enables the internal stability of this

set in the case of α = 1. Intuitively, this condition ensures that the agents

in the smaller group can maximize their own payoffs by minimizing the

payoffs of the members of the larger group. A similar condition is satisfied

in the main model.

If α = 1, there exists a stable set that is similar to the one characterized

in Theorem 5.3. For instance, if R > 30c, the set of all outcomes in which

only two out of three agents collaborate with each other is stable13. This

example satisfies the condition used in Grandjean and Vergote (2015): The

agent’s payoff is increasing in his degree and decreasing in the degree of

others. In pure network-formation models, this condition is sufficient for

the existence of stable sets of outcomes with dominant-group architecture.

Note, however, that this condition is not necessary and is not satisfied in

the main model of this paper.

If α = 3, the results obtained in the main model no longer hold. Let

R ∈ (12c, 17c). In this case, the group-optimal sequence is {2, 1}, but

any set of outcomes in which only two out of three agents collaborate is

13In every outcome of this stable set, all agents exert the maximum effort toward
working solo.
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unstable. To see this, consider the following three outcomes:

G =

1 1 0

1 1 0

0 0 0

 , G′ =

0 1 0

1 0 0

0 0 0

 and G′′ =

1 1 0

1 1 0

0 0 1

 .

Agent 3 strictly prefers outcome G over G′′, and, therefore, G blocks G′′,

and G′′ does not block G. Thus, an externally stable set that consists

of outcomes with only two agents collaborating must include at least two

outcomes that are obtained by a permutation of G or G′. However, any

such set does not satisfy internal stability. For example, agent 3 can ini-

tiate a blocking transition from G to a permutation of G′: At G, he may

unilaterally lower the payoffs of agents 1 and 2 by increasing his solo effort.

Moreover, if α = 3, stable sets may fail to exist altogether14. The dif-

ference between this paper’s results and those of Grandjean and Vergote

(2015) suggests that the existence of stable sets can be obtained by re-

stricting either a payoff structure (i.e., as in this paper, by specifying a

particular form of competition) or a set of feasible outcomes (i.e., as in

Grandjean and Vergote (2015), by focusing on a pure network-formation

model).

If α = 3, the agent’s solo effort level that maximizes his payoff is differ-

ent from the effort level that minimizes the payoffs of his rivals. Because of

this difference, large externally stable sets tend to be internally unstable.

If α = 1 (or if agents participate in a tournament rather than a Tullock

contest), these two effort levels are the same.

To fully generalize the results of Theorem 5.3, one must first provide

a general sufficient condition for the existence of farsighted stable sets.

This important question is currently unresolved, even in a narrower class

of models such as characteristic function games (see Ray and Vohra, 2015),

and is beyond the scope of this paper.

6 Discussion of the results

This paper contributes to the literature on network formation and its

applications to R&D collaboration, discrimination, and tournaments.

14For instance, if R ∈ (12c, 17c), stable sets do not exist in this example.
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The paper is closely related to Goyal and Joshi (2003), Goyal and

Moraga-Gonzalez (2001), and Marinucci and Vergote (2011). These pa-

pers develop models of R&D collaboration between market competitors.

In these models, firms can resort to joint research to save on R&D costs.

The common finding in this literature is that networks of collaboration that

consist of several components are possible in equilibrium.

My model produces several important results that do not appear in

the literature on R&D collaboration. First, I argue that under certain

conditions, efficient outcomes may be unstable. More precisely, I provide

a necessary and sufficient condition for the existence of a farsighted stable

set that contains an efficient outcome. If this condition is not satisfied,

efficient outcomes cannot be stable. Results in the previous literature often

do not rule out efficient networks as equilibrium outcomes under similar

conditions.

Second, in my model, the sizes of the complete components in stable

networks are uniquely determined by the shape of payoff functions, whereas

in Goyal and Joshi (2003) and Marinucci and Vergote (2011), the local

incentives of individual agents put bounds on the sizes of the components.

Also, the mechanics of my model are different from those in prior papers

on R&D collaboration. In Goyal and Joshi (2003), a link is missing from

a stable outcome because forming it is individually costly for at least one

of the two nodes.15 Decreasing the cost of the link leads to larger stable

components. In particular, if one assumes that links are beneficial rather

than costly, the unique stable outcome is a complete network. In my paper,

the links are missing because of the positive externality on the rest of the

agents. Therefore, even when links are beneficial, complete networks may

not be stable.

In addition, it is worth pointing out that Goyal and Joshi (2003), Goyal

and Moraga-Gonzalez (2001), and Marinucci and Vergote (2011) model

competition differently from this paper (the closest being Marinucci and

Vergote (2011), who model competition as a winner-takes-all tournament

with stochastic outcomes). Finally, the literature focuses mainly on the case

15Other papers on networks of R&D collaboration, such as Goyal and Moraga-
Gonzalez (2001) and Marinucci and Vergote (2011), share this feature with Goyal and
Joshi (2003).
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of pure network formation, whereas my model allows for a richer description

of collaborative relationships between agents.

This paper helps to explain the difference in results between R&D mod-

els that use a coalition- or network-formation approach. An extensive liter-

ature on collaboration between firms looks at coalitions of firms rather than

at bilateral agreements between them (e.g., Bloch (1995, 1996), Yi (1998,

1997), Yi and Shin (2000), and Joshi (2008)). Surveys of the literature can

be found in Bloch (2002) and Ray (2007). The predictions obtained in this

literature are different from the findings obtained in the network-formation

models discussed above. In particular, the grand coalition (which is the

analog of the complete network) is usually not stable, because there exists

a smaller coalition that prefers to reduce the amount of collaboration in

exchange for greater market power. For example, Bloch (1995) employs a

dynamic game in which firms sequentially propose to form alliances to re-

duce the marginal cost of production. Once the alliances are formed, firms

engage in Cournot competition. Bloch (1995) shows that the alliance struc-

ture in the market is usually asymmetric and inefficient. These results are

obtained under the assumption that participation in a coalition is exclusive.

I obtain similar results, but I do not use the exclusivity assumption: In my

paper, groups are endogenously exclusive. Therefore, my model is useful

for understanding the relationship between coalition- or alliance-formation

and network-formation models.

Grandjean and Vergote (2015) consider a network-formation model in

which the agent’s payoff is increasing in his own degree and decreasing in

the degree of his competitors. They show that if the payoff of any two

agents with the same degree always increases when they are connected by

a link, and if the payoff of agents in a small clique increases in the size of

the clique, there exists a stable set of networks. These networks are either

two-clique networks or dominant-group networks. In contrast to Grandjean

and Vergote (2015), this paper looks at a particular form of competition—

tournaments—but allows for a richer set of actions available to agents. It

also provides necessary and sufficient conditions for the stability of efficient

outcomes in winner-takes-all tournaments.

My theoretical findings successfully capture some properties of collab-

orative networks that are observed in practice. One salient illustration
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that supports my theoretical results is a study of the early GSM market

by Bekkers et al. (2002), who examine the emergence of GSM technology

in the 1990s. They document that large portfolios of standard-essential

patents for GSM technology were owned by several companies: Nokia, Mo-

torola, Alcatel, Phillips, Bull, Telia, and others. Five of these companies—

Ericsson, Nokia, Siemens, Motorola, and Alcatel—signed numerous cross-

licensing agreements that allowed them to use each other’s patents without

paying royalties. This network of cross-licensing agreements provided its

participants with a market advantage over firms that were not included.

Not surprisingly, the same five companies later dominated the market for

GSM infrastructure and terminals, having a total market share of 85% in

1996. At the same time, three other companies—Phillips, Bull, and Telia—

held roughly as many patents as Alcatel, but were not able to convert them

into a significant market share. Moreover, they performed worse than Er-

icsson and Siemens, which had considerably smaller patent portfolios, yet

were ranked the largest and third-largest GSM companies, respectively, in

1996.

My model suggests that if the stakes in the winner-takes-all competition

are high enough, the efficient network of collaboration, in which agents

sign all available collaborative agreements, is not stable. Moreover, there

are stable networks in which a group of firms that dominates the market

(let us call them insiders) does not collaborate with other, outsider firms.

Despite the fact that this tactic destroys the value of collaboration between

insiders and outsiders, it is profitable for the insiders because it allows them

to maintain their dominant position in the market. Indeed, Bekkers et al.

(2002) claim that the structure of cross-licensing agreements in the GSM

industry in the 1990s, directed by Motorola, was instrumental in crowding

out potential rivals such as Phillips. This story is not unique; for instance,

the 2009-13 smartphone patent war had similar features.

More generally, my model provides several important insights into such

phenomena as patent wars and other types of market competition outside

of the price domain. First, bilateral agreements such as cross-licensing are

a powerful instrument in shaping a landscape for future market competi-

tion. For instance, they can be used to create persistent asymmetric market

outcomes in symmetric environments. Second, if the stakes in the compe-
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tition are high, asymmetric inefficient outcomes (e.g., an inefficient level

of cross-licensing) are inevitable. Finally, the prospect of these outcomes

forces firms to join exclusive alliances in which bilateral agreements play

the role of a skeleton that holds alliances together.

My results relate to the program proposed by Salop and Scheffman

(1983), who state that firms can capture the market by increasing the costs

of production for their rivals. In another paper, Salop and Scheffman (1987)

describe various strategies that firms can use to raise their competitors’

costs. They find that some of these strategies can be more effective than

predatory pricing. For instance, a coalition of firms can use the mechanism

described in my model to gain control over the market. This coalition

does not need to engage in predatory pricing to raise the joint share of the

market; instead, it can limit access to its intellectual property and, hence,

create a competitive advantage for its members.

The findings in my paper complement the results in the literature on

sabotage in tournaments. Lazear (1989), Chen (2003), and Konrad (2000)

suggest that agents may sabotage their rivals if the cost of sabotage is low.

I argue that if costs are large, agents still can sabotage their rivals, but

they must coordinate their actions to save on costs. This gives rise to a

collective sabotage. I show that when the competition is for a large prize,

collective sabotage is self-enforcing and often unavoidable—i.e., it takes

place in every stable outcome.

Another application of my model is related to the theory proposed by

McAdams (1995), who suggests that racial discrimination in the U.S. is

fueled by the desire to maintain the gap in social status between the white

majority and ethnic and racial minorities. According to McAdams, if peo-

ple value high social status, they may sacrifice mutually beneficial interra-

cial interactions in order to gain higher status. Note that in this theory,

race is a marker that is irrelevant for the fundamental economic charac-

teristics of agents. However, since it is easily observable, it is convenient

to use it for specifying social norms that support the difference in social

status. In other countries, in which the population is more racially homo-

geneous, other markers, such as nationality, ethnicity, or religion, are used

for discrimination. Sometimes the markers are almost artificial and are not

derived from any observable characteristics of an individual. Examples of
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such markers are the castes in India, Pakistan, Nepal, and Sri Lanka.

McAdams (1995) provides evidence that discrimination is often sus-

tained through threats of exile. If a member of a discriminating majority

interacts with members of a discriminated minority, he or she risks be-

ing ostracized. My paper provides a mechanism for sustaining such social

norms when agents are allowed to undertake collective deviations from the

social norm. Despite the fact that my theoretical findings are qualitatively

the same for any number of agents, the model is better suited to small com-

munities in which coordination between individuals is easier to implement.

7 Conclusion

This paper proposes a model of bilateral collaboration between far-

sighted agents in tournaments. The model sheds light on the tension be-

tween agents’ objectives to outperform their rivals and to obtain as much

help from their rivals as possible. When tournament rewards are large, this

trade-off is resolved in favor of the former objective: In stable outcomes,

agents engage in fewer collaborative relationships than required by the ef-

ficiency. A refusal to engage in efficiency-improving collaboration serves

an important purpose: It allows some agents to secure high rankings in

the tournament. In the stable outcomes I find, missing collaboration is not

arbitrary. Agents endogenously sort into several groups of different sizes

and refuse to collaborate with anyone who belongs to smaller groups. As

a result, the network of collaboration consists of multiple complete compo-

nents. I characterize the size of each group and the intensity of within-group

collaboration in these outcomes.

The other main contribution of the paper is a necessary and sufficient

condition for the stability of efficient outcomes in winner-takes-all tourna-

ments. I find that the unique efficient outcome is not stable whenever the

tournament prize is large enough. This result supports the observation that

agents may collectively sacrifice collaboration to obtain higher rankings in

tournaments. In fact, this result suggests that if agents sufficiently value

high tournament rankings, such destructive behavior is unavoidable.

I also find that the ability to use transfers to compensate for missing col-

laboration does not necessarily restore efficiency. More precisely, there are

stable outcomes in which there are gains from trade (i.e., in which restoring
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a missing collaborative link generates a surplus), but agents cannot agree

on a self-enforcing system of transfers that is compatible with efficiency.

The setup of my model is close to that of existing models of network

formation, but the results I obtain are more in agreement with results in

coalition-formation models. Therefore, my paper contributes to settling the

differences between conflicting results in these two strands of the literature.

The results in this paper can provide insights into many seemingly unre-

lated phenomena, ranging from R&D collaboration to discrimination and

promotion tournaments. Even though the model is relatively stylized, I

believe that it pins down a common feature that unites the aforementioned

applications. In situations in which individual incentives unambiguously

point to an efficient outcome, there is still scope for inefficiency. In the en-

vironments described above, economic agents can make proposals to many

participants simultaneously—proposals that open doors for coalitional de-

viations. My findings suggest that when this happens, efficient outcomes

may be unachievable, as there may exist a coalition that benefits from a

deviation to a stable inefficient outcome.
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