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Proof of Lemma II.1

Combining equations (2) and (3) we obtain:

P1 + P2 ≤ 2max
s≤S
{V (Q1 − s) + V (Q2 + s)} −

(
Max
s≤S
{V (Q1 − s) + V (s)}+ V (Q2)

)
.

Because V is concave, we have that

max
s≤S
{V (Q1 − s) + V (s)}+ V (Q2) ≥Max

s≤S
{V (Q1 − s) + V (Q2 + s)}.

Therefore,

P1 + P2 ≤Max
s≤S
{V (Q1 − s) + V (Q2 + s)}

which, is the same as inequality (1).

Proof of Theorem 2

Monopolist maximizes the sum of the tariffs, subject to all the constraints introduced in

Section II.C. We start the proof by noticing, that some constraints can be omitted from the

problem.

Lemma 0.1 Constraints (3) and (5) are not binding:

• (4) and (9) imply (3);

• (2) and (7) imply (5).

Proof. First we prove, that (4) and (9) imply (3). If we add up constraints (4) and (9),

we obtain

P1 ≤ max
0≤s≤S

{V (Q1 − s) + V (Q2 + s)} − max
0≤s≤S

{V (q1 − s) + V (Q2 + s)}+ V (q1),
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which is a tighter bound on P1 than (3). Similarly, by adding up constraints (2) and (7) we

obtain that

p2 ≤ V (q2) + max
0≤s≤S

{V (Q1 − s) + V (Q2 + s)} − max
0≤s≤S

{V (Q1 − s) + V (s) + V (Q2)},

which implies (5).

Let us assume (and later prove) that inequalities (2), (4) and (7) are binding, i.e.

p1 = V (q1) (1)

P2 = max
0≤s≤S

{V (Q1 − s) + V (Q2 + s)} − max
0≤s≤S

{V (Q1 − s) + V (s)} (2)

p2 = P2 + V (q2)− V (Q2). (3)

Given that, inequalities (9) and (11) provide the condition on P1:

P1 ≤ p1 + max
0≤s≤S

{V (Q1 − s) + V (Q2 + s)} − max
0≤s≤S

{V (q1 − s) + V (Q2 + s)}

P1 ≤ p1 + max
0≤s≤S

{V (Q1 − s) + V (s)} − max
0≤s≤S

{V (q1 − s) + V (s)}.

We also assume that one of these two inequalities is binding. By Z(Q1, q1, x) we denote the

following expression:

Z(Q1, q1, x) = max
0≤s≤S

{V (Q1 − s) + V (x+ s)} − max
0≤s≤S

{V (q1 − s) + V (x+ s)}

Using notation we obtain that

P1 = p1 + min{Z(Q1, q1, 0), Z(Q1, q1, Q2)}. (4)

Equations (1),(2),(3) and (4) can be used to write down the profit of the monopolist as

a function of q1, q2, Q1 and Q2.

π = V (q1) + max
0≤s≤S

{V (Q1 − s) + V (Q2 + s)} − max
0≤s≤S

{V (Q1 − s) + V (s)}

+ α(V (q2)− V (Q2)) + (1− α) min{Z(Q1, q1, 0), Z(Q1, q1, Q2)}

Observe, that q∗2 = C∗ and Q∗1 = C∗+S maximize profit. To find the rest of the solution

we need to maximize

V (q1) + V (Q2 + S)− αV (Q2) + (1− α) min{V (Q2 + S)

− max
0≤s≤S

{V (q1 − s) + V (Q2 + s)}, V (S)− max
0≤s≤S

{V (q1 − s) + V (s)}}
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By proving the following lemma, we check, that the set of inequalities, that we assumed

to be binding, are actually binding in the optimum.

Lemma 0.2 Inequalities (2), (4), (7), (9) and (11) define the tariffs that maximize monop-

olist’s profits.

Proof. To prove this lemma we need to check if the rest of the inequalities are satisfied

with the solution of the relaxed problem. In particular we need to check if inequalities (6),

(8), (10) and (12). We start with (6)

p1 − P1 − V (q1) + V (Q1) =

max

{
max
0≤s≤S

{
V (q1 − s) + V (Q2 + s)

− V (Q2 + S)− V (q1)

}
, max
0≤s≤S

{
V (q1 − s) + V (s)

− V (S)− V (q1)

}}
≤ 0

(8) is equivalent to

p1 + p2 − P1 − P2 + max
0≤s≤S

{V (Q1 − s) + V (Q2 + s)} − max
0≤s≤S

{V (q1 − s) + V (q2 + s)} ≥

max
0≤s≤S

{V (q1 − s) + V (Q2 + s)} − V (Q2)− V (q1) ≥ 0

(10) is equivalent to

p2 − P2 + max
0≤s≤S

{V (Q1 − s) + V (Q2 + s)} − max
0≤s≤S

{V (Q1 − s) + V (q2 + s)} =

V (Q2 + s)− V (Q2) ≥ 0

and finally (12) is also satisfied:

p2 − P1 − P2 + max
0≤s≤S

{V (Q1 − s) + V (Q2 + s)} − V (q2) ≥

max
0≤s≤S

{V (q1 − s) + V (Q2 + s)} − V (q1)− V (Q2) ≥ 0.

Lemma 0.2 ensures, that the solution of a relaxed maximization problem coincides with

the solution of the original profit maximization problem. Now that we have this result, we

can get back to solving the relaxed problem. Let us consider the following expression:

min{V (Q2 + S)− max
0≤s≤S

{V (q1 − s) + V (Q2 + s)}, V (S)− max
0≤s≤S

{V (q1 − s) + V (s)}} (5)
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If Q2 ≥ q1 we have

max
0≤s≤S

{V (Q2 + S) + V (q1 − s) + V (s)} − V (q1)− V (Q2)− V (S) ≤ 0

and hence (5) becomes

min{V (Q2 + S)− V (q1)− V (Q2), V (S)− max
0≤s≤S

{V (q1 − s) + V (s)}} =

V (Q2 + S)− V (q1)− V (Q2).

If Q2 + 2S ≥ q1 ≥ Q2 we observe, that

max
0≤s≤S

{V (Q2 + S) + V (q1 − s) + V (s)} − 2V

(
q1 +Q2

2

)
− V (S) ≤ 0

and (5) can be rewritten as

min{V (Q2 + S)− 2V

(
q1 +Q2

2

)
, V (S)− max

0≤s≤S
{V (q1 − s) + V (s)}} =

V (Q2 + S)− 2V

(
q1 +Q2

2

)
.

Finally, if Q2 + 2S ≤ q1 (5) becomes

min{−V (q1 − S),−V (q1 − S)} = −V (q1 − S).

We can rewrite part of maximization problem that solves for Q2 and q1 as

max
Q2,q1
{f(q1, Q2)}

where

f(q1, Q2) =



αV (q1) + (2− α)V (Q2 + S)− V (Q2), if q1 ≤ Q2

V (q1) + (2− α)V (Q2 + S)− αV (Q2)

− 2(1− α)V
(
q1 +Q2

2

)
,

if Q2 < q1 ≤ Q2 + 2S

V (q1) + V (Q2 + S)− αV (Q2)− (1− α)V (q1 − S), if Q2 + 2S < q1

First we observe that the solution for maximization problem can never satisfy q1 < Q2

because function αV (q1) + (2 − α)V (Q2 + S) − V (Q2) has unique maximum q1 = C∗ and

Q2 + S < C∗. It means, that we should look for the solution in the set where q1 ≥ Q2.

There, however, observe that first order condition for q1 and Q2 suggest that V ′(q1) > 0 and
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V ′(Q2 + S) > 0, hence q1 < C∗ and Q2 < C∗ − S.

First order conditions that define Q∗2 and q∗1 are

V ′(q∗1) =

(1− α)V ′
(
q∗1+Q

∗
2

2

)
, if Q∗2 ≤ q∗1 < Q∗2 + 2S

(1− α)V ′(q∗1 − S) , otherwise

and

V ′(Q∗2 + S) =


αV ′(Q∗2) + (1− α)V ′

(
q∗1 +Q∗2

2

)
− (1− α)V ′(Q∗2 + S)

, if Q∗2 ≤ q∗1 < Q∗2 + 2S

αV ′(Q∗2) , otherwise

Proof of Theorem 3

Fix the time horizon to be T . Suppose the monopolist offers the flow qt and charges pt

for it. Then consumer’s problem is

max
ct≥0,bt∈{0,1}

{
T∫

0

(V (ytct)− xtbtpt) dt}

st =

t∫
0

(xτbτqτ − yτcτ )dτ

xt ∈

0, if st = S and btqt − ytct > 0

{0, 1}, otherwise

yt ∈

0, if st = 0 and btqt − ytct < 0

{0, 1}, otherwise

Where vector (xt, yt) denotes so-called regime. The meaning of this regime variables in

our problem is the following. By setting variable xt = 0 we make sure, that when the agent’s

storage is filled up to maximum capacity, the agent does not purchase the flow of good that

is larger than his consumption. Similarly, by setting yt = 0, we guarantee, that when the

agent’s storage is empty, the agent can not consume more than what he purchases. Note,

that correspondence that defines the domain of xt and yt is right continuous.

The control variables in this problem are ct and bt. By bt we denote a binary decision

whether consumer buys a flow at time t or not. Naturally, by ct we denote consumption at

time t.

The state variable for this problem is the amount of good, that is stored in the consumer’s

inventories at time t, i.e. st.
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By H we denote Hamiltonian for this problem:

H = Ψt(xtbtqt − ytct) + V (ytct)− xtbtpt.

Following Panteleev et al. (2011)1, we obtain necessary conditions for this problem:

c∗t =

0, if y∗t = 0

V ′−1(Ψ∗t ), otherwise

b∗t ∈


1, if x∗t = 1 and Ψ∗t >

pt
qt

{0, 1}, if x∗t = 1 and Ψ∗t = pt
qt

0, otherwise

Note, that Ψ∗t is piecewise constant with jumps at discontinuity points of x∗t and y∗t .

These necessary conditions state, that agents smooths his consumption whenever he has

some amount of good in the storage. Also, the agent purchases the good only when per unit

price is lower than the marginal utility of his current consumption.

Lemma 0.3 If c∗τ = 0, it must be that c∗t = 0 and b∗t = 0 for all t ∈ [0, τ ]

Proof. By contradiction let us assume that c∗t > 0 for all t ∈ [t1, t2] ⊂ [0, τ ] (since

Ψ∗t is piecewise constant there must exist non-degenerate interval). Then it must be that
t2∫
0

b∗tdt > 0. We can always find ε > 0 small enough, such that consumer stores ε more

by the time t2 and consumes it around time τ . Since c∗τ = 0 and V (·) is concave, it is an

improvement, hence the contradiction.

By this Lemma, we can restrict our attention on policies that induce strictly positive

consumption everywhere.

Let us partition our time interval [0, T ] into intervals {[ti−1, ti]}Ii=1 such that t0 = 0,

tI = T , and for all 1 ≤ i < I: ti = t ⇐⇒ s∗t = S and for any ε > 0 s∗τ is not

constant on τ ∈ (t − ε, t + ε). By construction, consumption inside interval i is constant

if ∀t ∈ [ti−1, ti] : st > 0 (we denote the consumption in the interval i by ci in this case).

Aggregate amount of good purchased within the interval i is

∫
t∈[ti−1,ti]

x∗t b
∗
t qtdt =


ci(ti − ti−1), if 1 < i < I

c1t1 + S, if i = 1

cI(T − tI−1)− S, if i = I

1See Panteleev, A.V., Bortakovskiy, A.S., Letova, T.A., “Optimalnoe Upravlenie V Primerah I Zadachah”,
Izdatelstvo MAI, 1996.
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Now let us look at the intervals that have the property that ∃t ∈ (ti−1, ti) : s∗t = 0. Take such

interval [ti−1, ti] if it exists and partition it further into subintervals, such that consumption

is constant within each subinterval (we can do that because Ψ∗t is piecewise constant). Lets

index those subintervals by j = 1, ...,mi. The endpoints of those intervals are t0i = ti−1,

and {tji}
mi
j=1, where tji is the right endpoint of jth interval. Observe, that consumption is

increasing in j i.e. cji < cj+1
i for all j = 1, ...,mi − 1. Also the aggregate amount of good

purchased within each subinterval is

∫
t∈[tj−1

i ,tji ]

x∗t b
∗
t qtdt =


cji (t

j
i − t

j−1
i ), if 1 < j < mi

c1i (t
0
i − t1i )− S, if j = 1

cmi
i (ti − tmi−1

i ) + S, if j = mi

From necessary conditions we know that per unit price of a good is bounded from above by

V ′(c). Also, we know that V ′(cmi
i ) ≤ V ′(c1i ), hence the profits of the monopolist that are

collected from sales in interval i are bounded from above by

mi∑
j=1

(tj−1i − tji )c
j
iV
′(cji ) + S(V ′(cmi

i )− V ′(c1i )) ≤
mi∑
j=1

(tj−1i − tji )c
j
iV
′(cji )

Now let us index our partitions by k ∈ K such that the new partition is the coarsest

refinement of the partitions above. Again price of a good is bounded from above by V ′(c)

so total profits that are bounded from above by

∑
k∈K

(tk − tk−1)
T

ckV
′(ck) +

S

T
(V ′(c1)− V ′(cI))

In the limit this bound becomes

lim sup
T→∞

(∑
k∈K

(tk − tk−1)
T

ckV
′(ck) +

S

T
(V ′(c1)− V ′(cI))

)
≤ max

c≥0
{cV ′(c)}

The expression on the right hand side is the profit from pricing the good linearly.

Proof of Lemma A.1

We now need to prove that it is indeed optimal to induce binding storage constraints.

There are several cases to be considered.

Consider first, the case in which the monopolist sets a policy in which storage is interior:

0 < s < S. We first discuss the case in which storage does not bind even if the consumer

chooses to skip the second period purchase, i.e., Q1

2
≤ S. In this case, consumer optimal
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smoothing behavior implies that profits are:

ΠI = 4V

(
Q1 +Q2

2

)
− 2V

(
Q1

2

)
− V (Q2).

The first order conditions can be combined to yield

2V ′
(
QI

1 +QI
2

2

)
= V ′

(
QI

1

2

)
= V ′(QI

2)

so that
QI

1

2
= QI

2 and 2V ′
(

3QI
2

2

)
= V ′(QI

2).

For storage not to be binding even when the consumer chooses to skip the second period

purchase, it must be the case that S ≥ QI
2.

We now show that all policies in the interior of this class violate the second order condi-

tions for the monopolist.

Assume by way of contradiction that QI
1 and QI

2 satisfy the first and second order condi-

tions, namely

V ′′
(
QI

1 +QI
2

2

)
− V ′′(QI

2) ≤ 0

1

2
V ′′(QI

2)

(
V ′′(QI

2)− 3V ′′
(
QI

1 +QI
2

2

))
≥ 0

These two inequalities imply that

2V ′′
(
QI

1 +QI
2

2

)
≤ V ′′(QI

2) ≤ 3V ′′
(
QI

1 +QI
2

2

)

which can only be true if V ′′
(
QI

1+Q
I
2

2

)
≥ 0. This contradicts the assumption that V is strictly

concave showing the desired contradiction.

This means that the solution to the maximization problem must be on the boundary of

this set: one of the constraints on storage is binding.

We now need to consider the case where capacity binds for skipping the second period

purchase but not for smoothing consumption. The reasoning is very similar. In this case,

profits are

ΠII = 4V

(
Q1 +Q2

2

)
− V (Q1 − S)− V (S)− V (Q2).

First order conditions for this problem imply that QII
1 − S = QII

2 . Second order condition
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then is

V ′′
(
QII

1 +QII
2

2

)
− V ′′(QII

2 ) ≤ 0

V ′′(QII
2 )

(
V ′′(QII

2 )− 2V ′′
(
QII

1 +QII
2

2

))
≥ 0

By combining two inequalities together we get that

V ′′
(
QI

1 +QI
2

2

)
≤ V ′′(QI

2) ≤ 2V ′′
(
QI

1 +QI
2

2

)
but this contradicts the concavity of V .

Finally, we need to show that the seller does not prefer to sell Q1 < Q2 in which case

optimal storage would be zero. When the seller sets Q1 < Q2 (and as long as capacity binds

in the event that the consumer skips second period purchases), there are two possibilities: in

the first case, when Q1 ≥ 2S, if the consumer skips the second period purchase, then storage

capacity binds. In this case, profits are

Π0 = 2(V (Q1) + V (Q2))− V (Q1 − S)− V (S)− V (Q2)

which are maximized when

2V ′(Q0
1) = V ′(Q0

1 − S)

V ′(Q0
2) = 0

thus we can rewrite profits as:

2V (Q0
1) + V ∗ − V (Q0

1 − S)− V (S).

It is easy to see that these are the same profits as in our candidate optimal policy. The role

of Q1 and Q2 are now reversed: second period consumption is efficient while first period

consumption is inefficiently low.2 This only happens when capacity is small enough, i.e.

S ≤ S̃ where S̃ solves

2V ′(2S̃) = V ′(S̃).

When S ≥ S̃, capacity does not bind when the consumer skips second period purchases.

2Thus, when storage capacity is low there is another solution. We do not highlight this solution because
it is no longer optimal in the cases considered later.
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Observe that Q1 < 2S in this case. Monopolist profits are then

max
Q1

{V ∗ + 2V (Q1)− 2V

(
Q1

2

)
}.

We need to show, that

max
Q1

{V ∗ + 2V (Q1)− 2V

(
Q1

2

)
} < ΠS

We notice that if Q1 ≥ S we can set Q2 = Q1 − S and obtain

2V (Q1)− 2V

(
Q1

2

)
< 2V (Q2 + S)− V (Q2)− V (S) ≤ ΠS

and, if Q1 < S, we obtain that

2V (Q1)− 2V

(
Q1

2

)
< V (Q1) < V (S) ≤ ΠS

Proof of Lemma A.3

This lemma is almost identical to Theorem 3, so we only sketch the proof here.

Suppose by contradiction, that V ′(xt) >
V (qt)
qt

, and agent’s storage is not full, i.e. st < S.

By purchasing multiple flow bundles, the agent can buys a measure ε > 0 of good (where ε

is small enough)3, he is going to pay εV (qt)
qt

. After the purchase agent can spread this small

portion of the good across
√
ε of time. His consumption is going to go up by ε√

ε
=
√
ε. The

net gain in utility in this case is

√
ε
(√

εV ′(xt)
)
− εV (qt)

qt
> 0

which is a desired contradiction. The same logic works for the case, when V ′(xt) <
V (qt)
qt

.

3This can be achieved by setting Bt − lim
τ→t−0

Bτ = ε
qt
.
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